Kinetics of coaggregation of Porphyromonas gingivalis with Fusobacterium nucleatum using an automated microtiter plate assay

Coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum strains was previously studied using either a semi-quantitative macroscopic assay or radioactive tracer assays. A new automated microtiter plate assay is introduced, in which the plate reader (Vmax) was adapted to allow quantitative evaluation of the kinetics of coaggregation. F. nucleatum PK 1594 coaggregated with P. gingivalis HG 405 with a maximal coaggregation rate of 1.05 mOD/min, which occurred at a P. gingivalis to F. nucleatum cell ratio of 1 to 2. F. nucleatum PK 1594 failed to do so with P. gingivalis strains A 7436 or ATCC 33277. Galactose inhibition of this coaggregation could be quantitatively measured over a wide range of concentrations to demonstrate its dose-dependent manner. P. gingivalis HG 405 failed to coaggregate with F. nucleatum strains ATCC 25586 and ATCC 49256. The assay used in the present study is a sensitive and efficient quantitative automated tool to study coaggregation and may replace tedious radioactive tracer assays.

Key words: coaggregation; Fusobacterium nucleatum; Porphyromonas gingivalis

Zvi Metzger, The Goldschleger School of Dental Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Accepted for publication October 8, 2000
We report here on an adaptation of the kinetic automated microtiter plate reader Vmax for an effective and quantitative measurement of the kinetics of coaggregation between bacterial strains and the kinetics and other characteristics of coaggregation of F. nucleatum PK 1594 with P. gingivalis HG 405 and its absence with P. gingivalis A 7436 or P. gingivalis ATCC 33277.

Material and methods

Bacterial strains and growth conditions

Three P. gingivalis strains, HG 405, A 7436 and ATCC 33277, were used in this study as well as Prevotella intermedia CB21. All of the above were tested for coaggregation with three F. nucleatum strains: PK 1594, ATCC 25586 and ATCC 49256.

P. gingivalis A 7436 has been shown to be highly pathogenic and disseminating in the mouse model (6, 7). Both P. gingivalis strains HG 405 and ATCC 33277 were capable of establishing a locally contained infection, which progressed to local supplicative lesions, but were incapable of dissemination even at high infectious dose (6, 7).

F. nucleatum PK 1594 has been studied previously for its coaggregation with several other P. gingivalis strains and has been defined as having a galactose-inhibitable adhesin that mediates its coaggregation with P. gingivalis PK 1924 (11, 14), as well as its attachment to mammalian cells (16). F. nucleatum strains ATCC 25586 (subsp. F. nucleatum) and ATCC 49256 (subsp. Prevotella vincentii) are two of the type strains for sub-species groups of F. nucleatum proposed by Dzink et al. (3). P. intermedia CB 21 has been studied by Baumgartner et al. for its synergistic pathogenicity with F. nucleatum VPI 10197 (1) and was used in the present study as a non-P. gingivalis positive control that presented high coaggregation with F. nucleatum PK 1594.

All of these strains were grown anaerobically in Wilkins-Chalgren anaerobic broth (Oxoid), in an atmosphere of 5% CO₂, 10% H₂ and 85% N₂ at 37°C (Coy anaerobic chamber). Bacterial strains were kept as frozen stocks and were started and passed three times in this growth medium before being used in the experiments. The cells were harvested from an overnight culture at a late exponential stage of growth.

Macrosopic coaggregation assay

The coaggregation assay originally described by Cisar et al. (2) and modified by Kolenbrander was used (11, 12). Briefly, bacteria of an overnight culture, which reached a late exponential or early stationary phase, were washed three times in an aggregation buffer consisting of 0.1 mM CaCl₂, 0.1 mM MgCl₂, 0.15 M NaCl and 0.02% NaN₃, dissolved in 1.0 mM Tris and adjusted to pH 8.0. The microorganisms were then resuspended in this buffer at an absorbance at 660 nm (A₆₆₀)=1.0 and kept at 4°C until used in the experiments.

To determine coaggregation, 150 µl of an A₆₆₀=1.0 suspension of each bacterium of the pairs of strains tested were mixed at room temperature. Co-aggregation was then followed visually, using the scale described by Cisar et al. (2). In this scale, 4⁺ corresponded to formation of large, fast settling aggregates, with the supernatant remaining water-clear; 3⁺ was defined by the formation of large settling aggregates, but with slightly turbid supernatant; 2⁺ represented the presence of definite aggregates which did not settle immediately; 1⁺ was characterized by finely dispersed aggregates in a turbid background, and 0 had no visible aggregates with no reduction in turbidity. In experiments in which bacterial ratios other than 1:1 were tested, the total A₆₆₀ of the mixture was also kept at 1.0.

Microscopic examination

Each mixed bacterial suspension that was macroscopically tested for coaggregation was also examined microscopically (phase contrast at ×1000 magnification). The observation was done on a “wet mount” as described by Kolenbrander & Andersen (11).

Vmax automated coaggregation assay

To quantitatively evaluate the coaggregation rate of weak coaggregating pairs and to quantitatively evaluate the influence of competitors with this coaggregation, the Vmax kinetic microtiter plate spectrophotometric reader (Molecular Devices Corp., Sunnyvale, CA) was utilized. It was adapted for a quantitative kinetic coaggregation assay of high sensitivity and reproducibility.

Flat-bottom 96-well microtiter plates (Maxisorp-immunoplates, Nunc) were pretreated by filling the wells with a solution of 0.05% Tween-20 in PBS, adjusted to pH 6.8, for 30 min. The buffer was then discarded and the plates were allowed to dry. Bacterial suspensions of each of the test strains in aggregation buffer (as described above) were adjusted to A₆₆₀=0.5 and added to the wells, fusobacteria first, followed by the porphyromonads. The total volume in each well was 110 µl, and the total A₆₆₀ was kept at 0.5, unless otherwise specified.

Different proportions between the coaggregating partners have been previously reported to dramatically influence the outcome, even to the extent that the same pair of bacteria seemed to lack coaggregating capacity when mixed at other than optimal ratios (11). Therefore, each pair of bacteria was tested with a range of P. gingivalis: F. nucleatum ratios, including 10:1, 3:1, 2:1, 1:1, 1:2, 1:3 and 1:10, and controls were included that consisted of each of the strains alone. The various bacterial proportions were achieved by dispensing the proper volumes of each of the suspensions to maintain an A₆₆₀ of 0.5. The assays were carried out in quadruplicate.

Immediately after the suspension of the second partner was added, the plates were inserted into the Vmax plate reader and the kinetics of the coaggregation followed for 30 min by monitoring the reduction in optical density. The reader was set to read each well every 14 s with repeated shaking and the limit set to optical density —0.05. The optical density diminished gradually with the aggregation, and the maximal slope of the resulting curve was expressed as Vmax value (expressed as change in (Δ) mOD/min), which was used to estimate different rates of aggregation. The correlation coefficient of the resulting curves was usually >93%, unless otherwise noted. For each group consisting of four wells, a mean Vmax value was calculated with a standard error of the mean usually within 5%.

Fusobacteria were always added first, while the second partner was added after a 2-min pause. This proved to be important, as it eliminated from the assay the slight background spontaneous sedimentation encountered with some fusobacterial strains. This slight sedimentation occurred before the plates were read and did not interfere with the assay.
Statistical analysis

For each of the coaggregation curves, a correlation coefficient was calculated by the Vmax software. Coaggregation rates (Vmax values) were expressed as means recorded in quadruplet wells. These values were compared to each other using Student’s t-test.

Results

Macroscopic and microscopic evaluation of coaggregation

Coaggregation of P. intermedia CB 21 with F. nucleatum PK 1594 was macroscopically graded as 4⁺; microscopic examination revealed large coaggregates with no free unassociated bacteria in the background (Table 1). Coaggregation of P. gingivalis HG 405 with F. nucleatum PK 1594 was macroscopically graded as 2⁺. Microscopic examination revealed large coaggregates that were smaller than those of the previous pair; nevertheless, very few free bacteria could be found in the background. P. gingivalis A 7436 or ATCC 33277 failed to coaggregate with F. nucleatum PK 1594 (Table 1), which was verified microscopically.

Testing F. nucleatum strains ATCC 25586 and ATCC 49256 presented a problem: their homologous suspensions rapidly and spontaneously auto-aggregated, precluding true determination of their coaggregating relationships with the test P. gingivalis strains. Using the macroscopic assay alone, they could have been erroneously evaluated as “3⁺”, as they presented with large aggregates with a turbid background. Nevertheless, microscopic examination revealed that the aggregates consisted of fusobacteria only, with no involvement of porphyromonads. Many porphyromonads could be seen in the background between the aggregates, with no apparent relation to the fusobacteria.

The size of the coaggregates of P. gingivalis HG 405 with F. nucleatum PK 1594 was affected by cell ratios, with smaller coaggregates formed at ratios higher or lower than 1:1. When only small coaggregates (containing few cells) were seen microscopically, no coaggregation could be observed in the macroscopic assay.

Table 1. Macroscopic and microscopic evaluation of coaggregation of F. nucleatum and P. gingivalis strain pairs

<table>
<thead>
<tr>
<th></th>
<th>Macroscopic assay</th>
<th>Microscopic observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate</td>
<td>Bacteria in background</td>
</tr>
<tr>
<td>F. nucleatum PK 1594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gingivalis HG 405</td>
<td>2⁺</td>
<td>Large</td>
</tr>
<tr>
<td>P. gingivalis A 7436</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>P. gingivalis ATCC 33277</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>P. intermedia CB 21</td>
<td>4⁺</td>
<td>Large</td>
</tr>
<tr>
<td>F. nucleatum PK 1594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gingivalis HG 405</td>
<td>2⁺</td>
<td>Large</td>
</tr>
<tr>
<td>F. nucleatum ATCC 25586</td>
<td>“3⁺”</td>
<td>F. nucleatum only</td>
</tr>
<tr>
<td>F. nucleatum ATCC 49256</td>
<td>“3⁺”</td>
<td>P. gingivalis only</td>
</tr>
</tbody>
</table>

* Macroscopic scale: 0 through 4⁺, as detailed in the text.

* Microscopic observation: presence of bacteria and aggregates.

* Aggregates of F. nucleatum alone with a turbid background of P. gingivalis alone could be erroneously interpreted as 3⁺ on the macroscopic scale. The microscopic observation revealed that the aggregates were made of F. nucleatum only and that there were no interrelations between the two strains.

Fig. 1. Vmax coaggregation assay: coaggregation patterns. Coaggregation patterns of P. gingivalis HG 405 with F. nucleatum PK 1594 and absence of coaggregation between P. gingivalis A 7436 and F. nucleatum PK 1594. P. gingivalis to F. nucleatum ratios of 2:1, 1:2 and 1:10, compared to P. gingivalis only and F. nucleatum only controls. Each curve is representative of the Vmax recording of the coaggregation in each of the 4 wells of a group. Correlation coefficients in the three coaggregating combinations (ratios 2:1, 1:2 and 1:10) were >95. A 30-min assay, limit set at OD = 0.05.
Fig. 2. Effect of bacterial concentrations on the coaggregation patterns. A. Coaggregation of *P. gingivalis* HG 405 with *F. nucleatum* PK 1594 at OD 1.0, 0.5 and 0.25. B. Coaggregation of *P. intermedia* CB 21 with *F. nucleatum* PK 1594 at OD 1.0, 0.5 and 0.25. Correlation coefficients as well as the rates of coaggregation are influenced by bacterial concentrations. Each curve is representative of the Vmax recording of the coaggregation in each of the four wells of a group.

Vmax coaggregation assay: technical aspects and considerations

The Vmax assay was initially attempted with bacterial suspensions of $A_{660}=1.0$, which resulted in a rather scattered line (Fig. 2A). Only when diluting the suspensions to $A_{660}=0.5$ could relatively smooth curves be obtained (Fig. 1, 2A). When the porphyromonads or the fusobacteria were tested as pure suspensions, almost no change in the optical density could be observed over a 30-min period (Fig. 1).

Assays lasting for 30 min or longer yielded reproducible results; however, shorter periods, such as 10 min, gave misleading results due to the influence of slight variability in handling times. We therefore selected the period of 30 min for routine use. The uniformity of the curves generated from the quadruplicate wells was usually high. The correlation coefficient of the estimated Vmax rates of each curve was generally greater than 93%. The standard error of the mean of the Vmax estimates for the replicates was usually within 5%.

Kinetics of coaggregation: *P. gingivalis* HG 405 with *F. nucleatum* PK 1594

At the optimal suspension concentration ($A_{660}=0.5$), this coaggregation proceeded at a constant rate of 1.05 mOD/min for at least 30 min (Fig. 2A). The bacterial cell proportions of *P. gingivalis* HG 405 mixed with *F. nucleatum* PK 1594 substantially influenced the rate of the resulting coaggregation, as detected by the Vmax assay. The highest rate was recorded when the *P. gingivalis* to *F. nucleatum* ratios were 1:2 and 1:3 (Fig. 1, 3). Altering the ratios outside these optima, in favor of either the porphyromonads or the fusobacteria, consistently lowered the Vmax rates of coaggregation. There was no coaggregation recorded with homologous suspensions of either of these bacteria and the Vmax values remained very low.

P. gingivalis A 7436, on the other hand, did not coaggregate with *F. nucleatum* PK 1594 as measured by this assay (Fig. 1). *P. gingivalis* ATCC 33277 also failed to coaggregate with *F. nucleatum* PK 1594 (data not presented).

Kinetics of coaggregation: *P. intermedia* CB 21 with *F. nucleatum* PK 1594

The coaggregation between *P. intermedia* CB 21 and *F. nucleatum* PK 1594 that was evaluated as 4+ in the macroscopic assay was also tested by the Vmax method. The above conditions did not provide a "smooth" curve for this highly coaggregating pair. At $A_{660}=1.0$, the coaggregation occurred too quickly, compromising the quality of the curves generated (correlation coefficient 0.34) (Fig. 2B). This was in accordance with the observations in the macroscopic assay in which occasional sedimenting aggregates formed fast while most of the bacteria were still in the suspension (data not presented). Adjusting the bacterial suspension to $A_{660}=0.5$ resulted in a slower but more orderly reaction with a correlation coefficient of 0.86. Further reduction to $A_{660}=0.25$ resulted in a
slower rate of coaggregation, improving the correlation coefficient to 0.94.

Galactose-mediated inhibition of coaggregation

When galactose was added to the bacterial suspensions containing *P. gingivalis* HG 405 and *F. nucleatum* PK 1594, it blocked the coaggregation as detected in either the macroscopic or microscopic assay (data not presented) or in the Vmax assay (Fig. 4). Galactose concentrations of 6 to 60 mM fully inhibited the coaggregation as detected not only by the Vmax assay but also by both macroscopic and microscopic analyses. With lower galactose concentrations (between 0.06 and 0.0006 mM), an inhibitory dose response was observed that could be quantitatively measured by the Vmax assay. This dose response compared favorably with the microscopic analysis but was difficult to detect by macroscopic assay. Glucose or mannose, which were used as a control, had no effect on the coaggregation (data not presented).

Discussion

Interactions between certain strains of *P. gingivalis* and *F. nucleatum*, which resulted in their coaggregation, have been previously studied and characterized (9–12, 14). A comprehensive study by Kolenbrander et al. has shown that, while *F. nucleatum* has many coaggregating partners, *F. nucleatum* was the only demonstrated coaggregating partner for *P. gingivalis* (12). Furthermore, it has been shown that this coaggregation was mediated by a lactose- or galactose-inhibitable adhesin (11).

In most of these coaggregation studies, a macroscopic assay (2) was effectively used. This simple method proved to be effective and easy to apply and was based on visual examination of a mixture of two bacterial cell suspensions. The degree of coaggregation was defined by the detection of aggregate formation and by their sedimentation, resulting in the clearing of the supernatant of the bacteria. The method allowed efficient processing of large numbers of samples, but it had two major drawbacks: (a) it was limited to a semi-quantitative evaluation of the aggregation and (b) when carried out with bacterial cell ratios other than the optimal, it may lead to erroneous negative results.

Quantitative spectrophotometric methods have been previously used by Gibbons et al., Ericson et al. and others to measure aggregation and coaggregation (4, 8, 13). In these methods, the reduction in the optical density of a bacterial suspension was used as a means to follow the formation and sedimentation of the aggregates. Most of these assays were conducted in vertical cuvettes or tubes, using a horizontal light path. The coaggregation and sedimentation of the aggregates in those assays removed the bacteria from the light path, thus reducing the suspension’s optical density. Though allowing a quantitative continuous monitoring of the process, processing of large numbers of replicate samples was rather cumbersome and slow.

In some recent studies, methods based on radioactive labeling of the bacteria have been introduced, to permit quantitative evaluation (9, 11, 16). Radioactive nucleotides were used to label one strain of bacteria or both and coaggregation was measured by the amount of tracer in the sedimented coaggregate. This allowed quantitative evaluation of the effects of lactose and other related sugars on the coaggregation (11, 16) as well as that of saliva and serum (9). Though effective, this method had several drawbacks, such as the release of the tracer from the bacteria into the medium, complicating the interpretation of the results. When this method was applied to kinetic studies, it was tedious and required repeating of the samples for each time point studied.

The kinetic coaggregation assay introduced here makes use of an automated microtiter plate reader and of the useful software that serves it. This assay is highly sensitive and reproducible and may be adapted for either high- or low-coaggregating bacterial pairs. Slight changes in coaggregation rate can easily be detected. The assay is quantitative and allows large numbers of samples...
and variables to be effectively handled at one time. Furthermore, it permits an automated processing of the data for analysis. In addition, the assay allows the study of the kinetics of the coaggregation process, using repeated measures of the same samples, thus introducing a feature that until now required extensive and elaborate work.

The vertical light beam used by this type of instrument makes it essentially and is a favorable replacement for the relatively tedious, radioactive quantitative assays.

Acknowledgments

The authors wish to thank Dr. M. E. Weiss from the Medical Research Council of Canada, Dr. J. C. Baumgartner from the University of Oregon for their generous support. This study was supported in part by a grant from the National Institutes of Health, Grant Nos. DE-08671 to RRA.

References

Kinetics of coaggregation with *F. nucleatum* 169

